SWITCHED TO HARRIS TEXT

Group A will perform the ONLINE Buffer lab this week.
Group B will perform the ONLINE Molar Mass lab this week and the ONLINE Buffer lab. Both lab presentations will be given during the same lab meeting.

Third midterm exam on Monday, November 23

Due to upcoming exam buffer and polyprotic acid homework has been posted

Buffer handout posted on web, complete with solutions.

9-5 Buffers

QUIZ 9 AVERAGE = 8.4 (highest I have ever had!)

Buffers

a solution that is able to withstand changes in pH (so that the pH is almost constant) upon addition of small amounts of acid or base - based upon the common ion effect
pH of human body $7.4\left(37^{\circ} \mathrm{C}\right)-$ below 7 and above 7.8 death quickly follows. In the body the pH is maintained by carbonate, phosphate and protein buffers
addition of NaOH so that solution is 0.05 M NaOH

Buffers - Common Ion Effect

EX 2. What is the pH of a solution which is 1.0 F HF and $1.0 \mathrm{~F} \mathrm{NaF}\left(K_{\mathrm{a}}=6.6\right.$ $\times 10^{-4}$) and the fraction (or percent) dissociated?

	$\mathrm{NaF}(\mathrm{s}) \rightarrow \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{F}^{-}(\mathrm{aq})$			
	HF(aq)	$+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})<=>$	$\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{a}$	+ $\mathrm{F}^{-}(\mathrm{aq})$
1	1.0		~ 0	1.0
C	- x		+ x	+ x
E	$1.0-x$		x	$1.0+x$
	$\frac{x)}{x} \sim x$	$\begin{aligned} => & \mathrm{pH}=3.18 \\ & \alpha=6.6 \times \end{aligned}$	$10^{-4} \text { or }$	066\% diss

Buffers - Common Ion Effect, HCI Addition

EX 3. What is the pH of a solution which is 1.0 F in both HF and $1.0 \mathrm{NaF}\left(K_{\mathrm{a}}=\right.$ 6.6×10^{-4}) and 0.1 M in HCl

$\mathrm{NaF}(\mathrm{s}) \rightarrow \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{F}^{-}(\mathrm{aq})$			
	HF(aq)	+ $\mathrm{F}^{-}(\mathrm{aq})$	$\mathrm{HCl}+\mathrm{NaF} \rightarrow \mathrm{NaCl}+\mathrm{HF}$
I	$1.0+0.1$	1.0-0.1	$\xrightarrow{=} \mathrm{H}^{+}+\mathrm{F}^{-} \rightarrow \mathrm{HF}$
C	- x	$+x$	(net ionic)
E	$1.1-x$	$0.9+x$	
	$\frac{x}{x} \sim 0$.		

solution behave like a buffer, originally before HCl addition pH was 3.18

Buffers - Common Ion Effect, NaOH Addition

EX 4. What is the pH of a solution which is 1.0 F in both HF and $1.0 \mathrm{NaF}\left(K_{\mathrm{a}}=\right.$ 6.6×10^{-4}) and 0.1 M in NaOH

$\mathrm{NaF}(\mathrm{s}) \rightarrow \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{F}^{-}(\mathrm{aq})$		
	HF(aq)	$+\mathrm{F}^{-}(\mathrm{aq}) \mathrm{NaOH}+\mathrm{HF} \rightarrow \mathrm{NaF}+\mathrm{H}_{2} \mathrm{O}$
I	1.0-0.1	$1.0+0.1=>\mathrm{OH}^{-}+\mathrm{HF} \rightarrow \mathrm{F}^{-}+\mathrm{H}_{2} \mathrm{O}$
C	- x	$+X \quad$ (net ionic)
E	$0.9-x$	$1.1+x$
	$\frac{x}{x} \sim 1.1$	

Working with Buffer Solutions

*note ratio of base form to acid form
based on a weak acid (HA) and its conjugate base (A^{-})

$$
\begin{aligned}
& \mathrm{HA}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \ll \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{A}^{-}(\mathrm{aq}) \\
& \text { Henderson-Hasselbalch } K_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]} \text { or } \mathrm{pH}=\mathrm{pH} K_{\mathrm{a}}+\log \frac{\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}+\log \frac{\left[\mathrm{A}^{-}\right]_{0}}{[\mathrm{HA}]_{0}}
\end{aligned}
$$

based on a weak base (B:) and its conjugate acid (BH^{+})
$\mathrm{B}:(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(I)<=>\mathrm{OH}^{-}(\mathrm{aq})+\mathrm{BH}^{+}(\mathrm{aq})$

$$
K_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right][\mathrm{B}:]}{\left[\mathrm{BH}^{+}\right]} \text {or } \mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+\log \frac{[\mathrm{B}:]}{\left[\mathrm{BH}^{+}\right]}
$$

Henderson-Hasselbalch

$$
\mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+\log \frac{[\mathrm{B}]_{0}}{\left[\mathrm{BH}^{+}\right]_{0}} \swarrow^{*} \swarrow_{\text {this acid }}^{\mathrm{p} K_{\mathrm{a}} \text { applies to }}
$$

Working with Buffer Solutions

*note ratio of base form to acid form
based on a weak acid (HA) and its conjugate base (A^{-})

$$
\begin{aligned}
& \mathrm{HA}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(I) \ll \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{A}^{-}(\mathrm{aq}) K_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]} \text { or } \mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+\log \frac{\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]} \\
& \text { Henderson-Hasselbalch } \mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+\log \frac{\left[\mathrm{A}^{-}\right]_{0}}{[\mathrm{HA}]_{0}}
\end{aligned}
$$

based on a weak base (B:) and its conjugate acid (BH^{+})

$$
\mathrm{B}:(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(I)<=>\mathrm{OH}^{-}(\mathrm{aq})+\mathrm{BH}^{+}(\mathrm{aq})
$$

Henderson-Hasselbalch

$$
K_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right][\mathrm{B}:]}{\left[\mathrm{BH}^{+}\right]} \text {or } \mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+\log \frac{[\mathrm{B}:]}{\left[\mathrm{BH}^{+}\right]}
$$

$$
\mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+\log \frac{[\mathrm{B}]_{0}}{\left[\mathrm{BH}^{+}\right]_{0}} \swarrow^{*}{ }_{\text {this acid }}^{\mathrm{p} K_{\mathrm{a}}} \text { applies to }
$$

Working with Buffer Solutions

Henderson-Hasselbalch Equation

For most cases the Henderson-Hasselbalch equation can be simplified by not solving the equilibrium problem and making the substitutions (real Henderson-Hasselbalch equation)

If F_{HA} or $F_{\mathrm{A}_{-}}$is small (solution is too dilute) or if $\left[\mathrm{H}^{+}\right]$or $\left[\mathrm{OH}^{-}\right]$is large (too acidic or too basic) then this approximation cannot be used and the systematic approach must be employed.

> (BUT THEN THE SOLUTION IS NOT A USEFUL BUFFER!)

Buffers - Elementary

EX 5. $\left.K_{\mathrm{a}}\left(\mathrm{CH}_{3} \mathrm{COOH}\right)=1.76 \times 10^{-5}\right)$

a) Determine the pH of a solution which is simultaneously $0.500 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$ and 0.300 M sodium acetate

Buffers - Elementary

EX 5. $\left.K_{a}\left(\mathrm{CH}_{3} \mathrm{COOH}\right)=1.76 \times 10^{-5}\right)$

a) Determine the pH of a solution which is simultaneously $0.500 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$ and 0.300 M sodium acetate
$\mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+\log _{10} \frac{\text { [base] }}{\text { [acid] }}$

Buffers - Elementary

EX 5. $\left.K_{a}\left(\mathrm{CH}_{3} \mathrm{COOH}\right)=1.76 \times 10^{-5}\right)$

a) Determine the pH of a solution which is simultaneously $0.500 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$ and 0.300 M sodium acetate

$$
\mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+\log _{10} \frac{[\text { base }]}{[\text { acid }]}=-\log _{10}\left(1.76 \times 10^{-5}\right)
$$

Buffers - Elementary

EX 5. $\left.K_{a}\left(\mathrm{CH}_{3} \mathrm{COOH}\right)=1.76 \times 10^{-5}\right)$

a) Determine the pH of a solution which is simultaneously $0.500 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$ and 0.300 M sodium acetate

$$
\mathrm{pH}=\mathrm{pK} \mathrm{a}_{\mathrm{a}}+\log _{10} \frac{[\text { base }]}{[\text { acid }]}=-\log _{10}\left(1.76 \times 10^{-5}\right)+\log _{10} \frac{[0.300]}{[0.500]}=4.533
$$

Buffers - Elementary

EX 5. $\left.K_{\mathrm{a}}\left(\mathrm{CH}_{3} \mathrm{COOH}\right)=1.76 \times 10^{-5}\right)$
a) Determine the pH of a solution which is simultaneously $0.500 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$ and 0.300 M sodium acetate
$\mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+\log _{10} \frac{\text { [base] }}{[\text { acid }]}=-\log _{10}\left(1.76 \times 10^{-5}\right)+\log _{10} \frac{[0.300]}{[0.500]}=4.533$
b) Determine the pH when 100 mL 0.200 M sodium acetate is added to 500 mL of 0.150 M acetic acid. weak acid + weak base => very little reaction

Buffers - Elementary

EX 5. $\left.K_{\mathrm{a}}\left(\mathrm{CH}_{3} \mathrm{COOH}\right)=1.76 \times 10^{-5}\right)$
a) Determine the pH of a solution which is simultaneously $0.500 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$ and 0.300 M sodium acetate
$\mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+\log _{10} \frac{[\text { base }]}{[\text { acid }]}=-\log _{10}\left(1.76 \times 10^{-5}\right)+\log _{10} \frac{[0.300]}{[0.500]}=4.533$
b) Determine the pH when 100 mL 0.200 M sodium acetate is added to 500 mL of 0.150 M acetic acid. weak acid + weak base => very little reaction

$$
\mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+\log _{10} \frac{[\text { base }]}{[\text { acid }]}=-\log _{10}\left(1.76 \times 10^{-5}\right)+\log _{10} \frac{100(0.200) / 600}{500(0.150) / 600}=4.879
$$

Buffers - Elementary

EX 6. Determine the pH when 100 mL of $0.500 \mathrm{M} \mathrm{NH}_{3}$ is mixed with 200 mL of 0.300 M ammonium chloride $\left(\mathrm{NH}_{4} \mathrm{Cl}\right), K_{\mathrm{b}}\left(\mathrm{NH}_{3}\right)=1.8 \times 10^{-5}$

Buffers - Elementary

EX 6. Determine the pH when 100 mL of $0.500 \mathrm{M} \mathrm{NH}_{3}$ is mixed with 200 mL of 0.300 M ammonium chloride $\left(\mathrm{NH}_{4} \mathrm{Cl}\right), K_{\mathrm{b}}\left(\mathrm{NH}_{3}\right)=1.8 \times 10^{-5}$

$$
\mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+\log _{10} \frac{[\text { base }]}{[\text { acid }]}=-\log _{10} \frac{\left(1.01 \times 10^{-14}\right)}{\left(1.8 \times 10^{-5}\right)}
$$

weak acid + weak base => very little reaction

Buffers - Elementary

EX 6. Determine the pH when 100 mL of $0.500 \mathrm{M} \mathrm{NH}_{3}$ is mixed with 200 mL of 0.300 M ammonium chloride $\left(\mathrm{NH}_{4} \mathrm{Cl}\right), K_{\mathrm{b}}\left(\mathrm{NH}_{3}\right)=1.8 \times 10^{-5}$

$$
\mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+\log _{10} \frac{[\text { base }]}{[\text { acid }]}=-\log _{10} \frac{\left(1.01 \times 10^{-14}\right)}{\left(1.8 \times 10^{-5}\right)}+\log _{10} \frac{(0.100)(0.500)}{(0.200)(0.300)}=9.172
$$

Buffers - Elementary

EX 6. Determine the pH when 100 mL of $0.500 \mathrm{M} \mathrm{NH}_{3}$ is mixed with 200 mL of 0.300 M ammonium chloride $\left(\mathrm{NH}_{4} \mathrm{Cl}\right), K_{\mathrm{b}}\left(\mathrm{NH}_{3}\right)=1.8 \times 10^{-5}$

$$
\mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+\log _{10} \frac{[\text { base }]}{[\text { acid }]}=-\log _{10} \frac{\left(1.01 \times 10^{-14}\right)}{\left(1.8 \times 10^{-5}\right)}+\log _{10} \frac{(0.100)(0.500)}{(0.200)(0.300)}=9.172
$$

Buffers - Preparation 1

EX 7. Prepare 500 mL of a solution buffered at $\mathrm{pH}=4.50$ with a buffer concentration of 0.40 M . This buffer is to be made from $1.00 \mathrm{M} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}\left(K_{\mathrm{a}}\right.$ $=6.3 \times 10^{-5}, \mathrm{p} K_{\mathrm{a}}=4.2006$) and $1.00 \mathrm{M} \mathrm{NaC}_{6} \mathrm{H}_{5} \mathrm{COO}$. What volume of acid and its conjugate base would you need?

Buffers - Preparation 1

EX 7. Prepare 500 mL of a solution buffered at $\mathrm{pH}=4.50$ with a buffer concentration of 0.40 M . This buffer is to be made from $1.00 \mathrm{M} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}\left(K_{a}\right.$ $=6.3 \times 10^{-5}, \mathrm{p} K_{\mathrm{a}}=4.2006$) and $1.00 \mathrm{M} \mathrm{NaC}_{6} \mathrm{H}_{5} \mathrm{COO}$. What volume of acid and its conjugate base would you need?
$\mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+\log _{10} \frac{[\mathrm{~B}]}{[\mathrm{A}]}$

Buffers - Preparation 1

EX 7. Prepare 500 mL of a solution buffered at $\mathrm{pH}=4.50$ with a buffer concentration of 0.40 M . This buffer is to be made from $1.00 \mathrm{M} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}\left(K_{a}\right.$ $=6.3 \times 10^{-5}, \mathrm{p} K_{\mathrm{a}}=4.2006$) and $1.00 \mathrm{M} \mathrm{NaC}_{6} \mathrm{H}_{5} \mathrm{COO}$. What volume of acid and its conjugate base would you need?

$$
\mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+\log _{10} \frac{[\mathrm{~B}]}{[\mathrm{A}]}=>\text { ratio, } \mathrm{R}=\frac{[\mathrm{B}]}{[\mathrm{A}]}=10^{\mathrm{pH}-\mathrm{p} K_{\mathrm{a}}}
$$

Buffers - Preparation 1

EX 7. Prepare 500 mL of a solution buffered at $\mathrm{pH}=4.50$ with a buffer concentration of 0.40 M . This buffer is to be made from $1.00 \mathrm{M} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}\left(K_{\mathrm{a}}\right.$ $=6.3 \times 10^{-5}, \mathrm{p} K_{\mathrm{a}}=4.2006$) and $1.00 \mathrm{M} \mathrm{NaC}_{6} \mathrm{H}_{5} \mathrm{COO}$. What volume of acid and its conjugate base would you need?

$$
\begin{aligned}
\mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+\log _{10} \frac{[\mathrm{~B}]}{[\mathrm{A}]} \Rightarrow>\text { ratio, } \mathrm{R}=\frac{[\mathrm{B}]}{[\mathrm{A}]}=10^{\mathrm{pH}-\mathrm{p} K \mathrm{a}} & =10^{4.50-4.2006}=1.992 \\
& =[\mathrm{B}]=1.992[\mathrm{~A}]
\end{aligned}
$$

Buffers - Preparation 1

EX 7. Prepare 500 mL of a solution buffered at $\mathrm{pH}=4.50$ with a buffer concentration of 0.40 M . This buffer is to be made from $1.00 \mathrm{M} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}$ (K_{a} $=6.3 \times 10^{-5}, \mathrm{p} K_{\mathrm{a}}=4.2006$) and $1.00 \mathrm{M} \mathrm{NaC}_{6} \mathrm{H}_{5} \mathrm{COO}$. What volume of acid and its conjugate base would you need?

$$
\begin{aligned}
& \mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log _{10}\left[\frac{[\mathrm{~B}]}{[\mathrm{A}]}=>\text { ratio, } \mathrm{R}=\frac{[\mathrm{B}]}{[\mathrm{A}]}=10^{\mathrm{pH}-\mathrm{pKa}}=10^{4.50-4.2006}=1.992\right. \\
& =>[\mathrm{B}]=1.992[\mathrm{~A}] \\
& {[\mathrm{B}]+[\mathrm{A}]=0.40=1.992[\mathrm{~A}]+[\mathrm{A}]=>[\mathrm{A}]=0.1336 \mathrm{M}}
\end{aligned}
$$

Buffers - Preparation 1

EX 7. Prepare 500 mL of a solution buffered at $\mathrm{pH}=4.50$ with a buffer concentration of 0.40 M . This buffer is to be made from $1.00 \mathrm{M} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}$ (K_{a} $=6.3 \times 10^{-5}, \mathrm{p} K_{\mathrm{a}}=4.2006$) and $1.00 \mathrm{M} \mathrm{NaC}_{6} \mathrm{H}_{5} \mathrm{COO}$. What volume of acid and its conjugate base would you need?

$$
\begin{aligned}
& \begin{aligned}
\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log _{10}\left[\frac{[\mathrm{~B}]}{[\mathrm{A}]} \Rightarrow \text { ratio, } \mathrm{R}=\frac{[\mathrm{B}]}{[\mathrm{A}]}=10^{\mathrm{pH}-\mathrm{p} K \mathrm{a}}\right. & =10^{4.50-4.2006}=1.992 \\
& =>[\mathrm{B}]=1.992[\mathrm{~A}]
\end{aligned} \\
& {[\mathrm{B}]+[\mathrm{A}]=0.40=1.992[\mathrm{~A}]+[\mathrm{A}]=>[\mathrm{A}]=0.1336 \mathrm{M}} \\
& =\mathrm{V}(1.00) / 500 \text { => } 66.8 \mathrm{~mL}
\end{aligned}
$$

Buffers - Preparation 1

EX 7. Prepare 500 mL of a solution buffered at $\mathrm{pH}=4.50$ with a buffer concentration of 0.40 M . This buffer is to be made from $1.00 \mathrm{M} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}\left(\mathrm{K}_{\mathrm{a}}\right.$ $=6.3 \times 10^{-5}, \mathrm{pK}_{\mathrm{a}}=4.2006$) and $1.00 \mathrm{M} \mathrm{NaC}{ }_{6} \mathrm{H}_{5} \mathrm{COO}$. What volume of acid and its conjugate base would you need?

$$
\begin{aligned}
& \mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log _{10} \frac{[\mathrm{~B}]}{[\mathrm{A}]} \Rightarrow>\text { ratio, } \mathrm{R}=\frac{[\mathrm{B}]}{[\mathrm{A}]}=10^{\mathrm{pH}-\mathrm{pKa}}=10^{4.50-4.2006}=1.992 \\
& =>[\mathrm{B}]=1.992[\mathrm{~A}] \\
& \begin{aligned}
{[\mathrm{B}]+[\mathrm{A}]=0.40=1.992[\mathrm{~A}]+[\mathrm{A}]=>[\mathrm{A}] } & =0.1336 \mathrm{M} \\
& =\mathrm{V}(1.00) / 500 \Rightarrow 66.8 \mathrm{~mL}
\end{aligned}
\end{aligned}
$$

$$
\begin{array}{rl}
{[B]=1.992[A]=1.992(0.1336)=0.2661 \mathrm{M}} & \text { check ratio: } \\
=V_{B}(1.00) / 500=>133 \mathrm{~mL} & R=0.133(1.00) / \\
& 0.0668(1.00)=1.991
\end{array}
$$

Buffers - Preparation 2

EX 8. Prepare a solution buffered at $\mathrm{pH}=11.10$. This buffer is to be made from 225 mL of $0.331 \mathrm{M} \mathrm{CH}_{3} \mathrm{NH}_{2}\left(K_{\mathrm{a}}=2.3 \times 10^{-11}, \mathrm{p} K_{\mathrm{a}}=10.6382\right)$ to which 0.293 M HI is added. What volume of HI would you need?

Buffers - Preparation 2

EX 8. Prepare a solution buffered at $\mathrm{pH}=11.10$. This buffer is to be made from 225 mL of $0.331 \mathrm{M} \mathrm{CH}_{3} \mathrm{NH}_{2}\left(K_{\mathrm{a}}=2.3 \times 10^{-11}, \mathrm{p} K_{\mathrm{a}}=10.6382\right)$ to which 0.293 M HI is added. What volume of HI would you need?

$$
\mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+\log _{10} \frac{[\mathrm{~B}]}{[\mathrm{A}]}=>
$$

Buffers - Preparation 2

EX 8. Prepare a solution buffered at $\mathrm{pH}=11.10$. This buffer is to be made from 225 mL of $0.331 \mathrm{M} \mathrm{CH}_{3} \mathrm{NH}_{2}\left(K_{\mathrm{a}}=2.3 \times 10^{-11}, \mathrm{p} K_{\mathrm{a}}=10.6382\right)$ to which 0.293 M HI is added. What volume of HI would you need?

$$
\mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+\log _{10} \frac{[\mathrm{~B}]}{[\mathrm{A}]}=>\text { ratio, } \mathrm{R}=\frac{[\mathrm{B}]}{[\mathrm{A}]}
$$

Buffers - Preparation 2

EX 8. Prepare a solution buffered at $\mathrm{pH}=11.10$. This buffer is to be made from 225 mL of $0.331 \mathrm{M} \mathrm{CH}_{3} \mathrm{NH}_{2}\left(K_{\mathrm{a}}=2.3 \times 10^{-11}, \mathrm{p} K_{\mathrm{a}}=10.6382\right)$ to which 0.293 M HI is added. What volume of HI would you need?
$\mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+\log _{10} \frac{[\mathrm{~B}]}{[\mathrm{A}]}=>$ ratio, $\mathrm{R}=\frac{[\mathrm{B}]}{[\mathrm{A}]}$
$\mathrm{CH}_{3} \mathrm{NH}_{2}+\mathrm{HI} \rightarrow \mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}+\mathrm{I}^{-}$

Buffers - Preparation 2

EX 8. Prepare a solution buffered at $\mathrm{pH}=11.10$. This buffer is to be made from 225 mL of $0.331 \mathrm{M} \mathrm{CH}_{3} \mathrm{NH}_{2}\left(K_{\mathrm{a}}=2.3 \times 10^{-11}, \mathrm{p} K_{\mathrm{a}}=10.6382\right)$ to which 0.293 M HI is added. What volume of HI would you need?
$\begin{aligned} \mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+\log _{10} \frac{[\mathrm{~B}]}{[\mathrm{A}]}=>\text { ratio, } \mathbf{R}=\frac{[\mathrm{B}]}{[\mathrm{A}]}=\frac{n_{\mathrm{B}}}{n_{\mathrm{A}}}=10^{\mathrm{pH}-\mathrm{p} \mathrm{a}_{\mathrm{a}}} & =10^{11.10-10.6382}=\mathbf{2 . 8 9 6} \\ & =>n_{\mathrm{B}}=2.896 n_{\mathrm{A}}\end{aligned}$
$\mathrm{CH}_{3} \mathrm{NH}_{2}+\mathrm{HI} \rightarrow \mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}+\mathrm{I}^{-}$

Buffers - Preparation 2

EX 8. Prepare a solution buffered at $\mathrm{pH}=11.10$. This buffer is to be made from 225 mL of $0.331 \mathrm{M} \mathrm{CH}_{3} \mathrm{NH}_{2}\left(K_{\mathrm{a}}=2.3 \times 10^{-11}, \mathrm{p} K_{\mathrm{a}}=10.6382\right)$ to which 0.293 M HI is added. What volume of HI would you need?

$$
\begin{aligned}
\mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+\log _{10} \frac{[\mathrm{~B}]}{[\mathrm{A}]}=>\text { ratio, } \mathbf{R}=\frac{[\mathrm{B}]}{[\mathrm{A}]}=\frac{n_{\mathrm{B}}}{n_{\mathrm{A}}}=10^{\mathrm{pH}-\mathrm{p} K_{\mathrm{a}}} & =10^{11.10-10.6382}=\mathbf{2 . 8 9 6} \\
& =>n_{\mathrm{B}}=2.896 n_{\mathrm{A}}
\end{aligned}
$$

$\mathrm{CH}_{3} \mathrm{NH}_{2}+\mathrm{HI} \rightarrow \mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}+\mathrm{I}^{-}$

$$
n_{\mathrm{B}}+n_{\mathrm{A}}=0.225(0.331)
$$

Buffers - Preparation 2

EX 8. Prepare a solution buffered at $\mathrm{pH}=11.10$. This buffer is to be made from 225 mL of $0.331 \mathrm{M} \mathrm{CH}_{3} \mathrm{NH}_{2}\left(K_{\mathrm{a}}=2.3 \times 10^{-11}, \mathrm{p} K_{\mathrm{a}}=10.6382\right)$ to which 0.293 M HI is added. What volume of HI would you need?

$$
\begin{aligned}
& \mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+\log _{10} \frac{[\mathrm{~B}]}{[\mathrm{A}]}=>\text { ratio, } \mathbf{R}=\frac{[\mathrm{B}]}{[\mathrm{A}]}=\frac{n_{\mathrm{B}}}{n_{\mathrm{A}}}=10^{\mathrm{pH}-\mathrm{p} K_{\mathrm{a}}}=10^{11.10-10.6382}=\mathbf{2 . 8 9 6} \\
&=>n_{\mathrm{B}}=2.896 n_{\mathrm{A}}
\end{aligned}
$$

$\mathrm{CH}_{3} \mathrm{NH}_{2}+\mathrm{HI} \rightarrow \mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}+\mathrm{I}^{-}$
$\boldsymbol{n}_{\mathrm{B}}+\boldsymbol{n}_{\mathrm{A}}=\mathbf{0 . 2 2 5}(\mathbf{0 . 3 3 1})=0.074475=2.896 n_{\mathrm{A}}+n_{\mathrm{A}}=>n_{\mathrm{A}}=0.01911 \mathrm{~mol}$

Buffers - Preparation 2

EX 8. Prepare a solution buffered at $\mathrm{pH}=11.10$. This buffer is to be made from 225 mL of $0.331 \mathrm{M} \mathrm{CH}_{3} \mathrm{NH}_{2}\left(K_{\mathrm{a}}=2.3 \times 10^{-11}, \mathrm{p} K_{\mathrm{a}}=10.6382\right)$ to which 0.293 M HI is added. What volume of HI would you need?

$$
\begin{aligned}
\mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+\log _{10} \frac{[\mathrm{~B}]}{[\mathrm{A}]}=>\text { ratio, } \mathbf{R}=\frac{[\mathrm{B}]}{[\mathrm{A}]}=\frac{n_{\mathrm{B}}}{n_{\mathrm{A}}}=10^{\mathrm{pH}-\mathrm{p} K_{\mathrm{a}}} & =10^{11.10-10.6382}=\mathbf{2 . 8 9 6} \\
& =>n_{\mathrm{B}}=2.896 n_{\mathrm{A}}
\end{aligned}
$$

$\mathrm{CH}_{3} \mathrm{NH}_{2}+\mathrm{HI} \rightarrow \mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}+\mathrm{I}^{-}$

$$
\boldsymbol{n}_{\mathrm{B}}+\boldsymbol{n}_{\mathrm{A}}=\mathbf{0 . 2 2 5}(\mathbf{0 . 3 3 1})=0.074475=2.896 n_{\mathrm{A}}+n_{\mathrm{A}} \Rightarrow n_{\mathrm{A}}=0.01911 \mathrm{~mol}
$$

$$
0.01911=\mathrm{V}(0.293)=>65.2 \mathrm{~mL}
$$

