BUFFERS

SWITCHED TO HARRIS TEXT

Group A will perform the ONLINE Buffer lab this week.

Group B will perform the ONLINE Molar Mass lab this week and the ONLINE Buffer lab. Both lab presentations will be given during the same lab meeting.

Third midterm exam on Monday, November 23

Due to upcoming exam buffer and polyprotic acid homework has been posted

Buffer handout posted on web, complete with solutions.

QUIZ 9 AVERAGE = 8.4 (highest I have ever had!)

9-5 Buffers

REVIEW FROM FRIDAY

Buffers

a solution that is able to withstand changes in pH (so that the pH is almost constant) upon addition of small amounts of acid or base - based upon the **common ion effect**

pH of human body 7.4 (37°C) – below 7 and above 7.8 death quickly follows. In the body the pH is maintained by carbonate, phosphate and protein buffers

addition of NaOH so that solution is 0.05 M NaOH

Buffers – Common Ion Effect

EX 2. What is the pH of a solution which is 1.0 F HF and 1.0 F NaF ($K_a = 6.6 \times 10^{-4}$) and the fraction (or percent) dissociated?

	NaF(s) → Na+(<i>aq</i>) + F [_] (<i>aq</i>)		
ł	$HF(aq) + H_2O(l)$	<=> H ₃ O ⁺ (<i>aq</i>)	+ F⁻(<i>aq</i>)
I	1.0	~ 0	1.0
С	- X	+ <i>X</i>	+ <i>X</i>
E 1	0 - x	X	1.0 + <i>x</i>

$$K_{a} = \frac{x(1.0 + x)}{1.0 - x} \sim x \Rightarrow pH = 3.18$$

 $\alpha = 6.6 \times 10^{-4} \text{ or } 0.066\% \text{ dissociated}$

Buffers – Common Ion Effect, HCI Addition

EX 3. What is the pH of a solution which is 1.0 F in both HF and 1.0 NaF ($K_a = 6.6 \times 10^{-4}$) and 0.1 M in HCl

$$\begin{array}{rcl} \mathsf{NaF}(s) & \rightarrow & \mathsf{Na^+}(aq) \ + \ \mathsf{F^-}(aq) \\ \mathsf{HF}(aq) \ + \ \mathsf{H_2O}(l) \ <=> \ \mathsf{H_3O^+}(aq) \ + \ \mathsf{F^-}(aq) \\ 1.0 \ + \ \mathsf{0.1} & \sim 0 & 1.0 \ - \ \mathsf{0.1} & => \ \mathsf{H^+ + F^-} \ \rightarrow \ \mathsf{HF} \\ \mathsf{C} & -x & +x & +x & (\text{net ionic}) \\ \mathsf{E} & 1.1 \ - x & x & 0.9 \ + x \end{array}$$

$$K_{a} = \frac{x(0.9 + x)}{1.1 - x} \sim 0.9x / 1.1 => pH = 3.09$$

solution behave like a buffer, originally before HCI addition pH was 3.18

Buffers – Common Ion Effect, NaOH Addition

EX 4. What is the pH of a solution which is 1.0 F in both HF and 1.0 NaF ($K_a = 6.6 \times 10^{-4}$) and 0.1 M in NaOH

 $\begin{array}{rcl} {\sf NaF(s)} & \to & {\sf Na^+}(aq) \ + \ {\sf F^-}(aq) \\ & {\sf HF}(aq) \ + \ {\sf H_2O}({\it I}) \ <=> \ {\sf H_3O^+}(aq) \ + \ {\sf F^-}(aq) \\ & {\sf NaOH} \ + \ {\sf HF} \ \rightarrow \ {\sf NaF} \ + \ {\sf H_2O} \\ & {\sf I}.0 \ - \ {\sf 0.1} \ & {~ 0} \\ & {\sf I}.0 \ + \ {\sf 0.1} \ => \ {\sf OH^-} \ + \ {\sf HF} \ \rightarrow \ {\sf F^-} \ + \ {\sf H_2O} \\ & {\sf C} \ & {\sf -x} \ & {\sf +x} \ & {\sf +x} \ & {\sf (net\ ionic)} \\ & {\sf E} \ & {\sf 0.9-x} \ & {\sf x} \ & {\sf 1.1+x} \end{array}$

$$K_{a} = \frac{x(1.1 + x)}{0.9 - x} \sim 1.1x/0.9 \implies pH = 3.27$$

solution behave like a buffer, originally before NaOH addition pH was 3.18

REVIEW FROM FRIDAY

Working with Buffer Solutions

*note ratio of base form to acid form

based on a weak acid (HA) and its conjugate base (A⁻) Henderson-Hasselbalch $F_{a} = \frac{[H_{3}O^{+}][A^{-}]}{[HA]} \text{ or } pH = pK_{a} + \log \frac{[A^{-}]}{[HA]}$ $K_{a} = \frac{[H_{3}O^{+}][A^{-}]}{[HA]} \text{ or } pH = pK_{a} + \log \frac{[A^{-}]}{[HA]}$ $K_{a} = \frac{[H_{3}O^{+}][A^{-}]}{[HA]} \text{ or } pH = pK_{a} + \log \frac{[A^{-}]}{[HA]}$ based on a weak base (B:) and its conjugate acid (BH⁺) $B:(aq) + H_2O(l) \iff OH^-(aq) + BH^+(aq)$ $K_{a} = \frac{[H_{3}O^{+}][B]}{[BH^{+}]}$ or pH = p K_{a} + log $\frac{[B]}{[BH^{+}]}$ Henderson-Hasselbalch pH = pK_a + log $\frac{[B]_o}{[BH^+]_o}$ * \swarrow^{pK_a} applies to this acid

REVIEW FROM FRIDAY

Working with Buffer Solutions

*note ratio of base form to acid form

based on a weak acid (HA) and its conjugate base (A⁻) $HA(aq) + H_2O(l) \iff H_3O^+(aq) + A^-(aq)$ $K_{a} = \frac{[H_{3}O^{+}][A^{-}]}{[HA]}$ or pH = p K_{a} + log $\frac{[A^{-}]}{[HA]}$ $pH = pK_a + \log \frac{[A^-]_o}{[HA]_o}$ Henderson-Hasselbalch based on a weak base (B:) and its conjugate acid (BH⁺) $B:(aq) + H_2O(l) \iff OH^-(aq) + BH^+(aq)$ $K_{a} = \frac{[H_{3}O^{+}][B]}{[BH^{+}]}$ or pH = p K_{a} + log $\frac{[B]}{[BH^{+}]}$ Henderson-Hasselbalch $pH = pK_a + \log \frac{[B]_o}{[BH^+]} \bigvee^* pK_a \text{ applies to}$ *this* acid

Working with Buffer Solutions

Henderson-Hasselbalch Equation

For most cases the Henderson-Hasselbalch equation can be simplified by not solving the equilibrium problem and making the substitutions (real Henderson-Hasselbalch equation)

If F_{HA} or F_{A-} is small (solution is too dilute) or if [H⁺] or [OH⁻] is large (too acidic or too basic) then this approximation cannot be used and the systematic approach must be employed.

(BUT THEN THE SOLUTION IS NOT A USEFUL BUFFER!)

EX 5. K_a (CH₃COOH) = 1.76 × 10⁻⁵)

EX 5. K_a (CH₃COOH) = 1.76 × 10⁻⁵)

$$pH = pK_a + \log_{10} \frac{[base]}{[acid]}$$

EX 5. K_a (CH₃COOH) = 1.76 × 10⁻⁵)

$$pH = pK_a + \log_{10} \frac{[base]}{[acid]} = -\log_{10}(1.76 \times 10^{-5})$$

EX 5. K_a (CH₃COOH) = 1.76 × 10⁻⁵)

$$pH = pK_a + \log_{10} \frac{[base]}{[acid]} = -\log_{10}(1.76 \times 10^{-5}) + \log_{10} \frac{[0.300]}{[0.500]} = 4.533$$

EX 5. K_a (CH₃COOH) = 1.76 × 10⁻⁵)

a) Determine the pH of a solution which is simultaneously 0.500 M CH_3COOH and 0.300 M sodium acetate

$$pH = pK_a + \log_{10} \frac{[base]}{[acid]} = -\log_{10}(1.76 \times 10^{-5}) + \log_{10} \frac{[0.300]}{[0.500]} = 4.533$$

b) Determine the pH when 100 mL 0.200 M sodium acetate is added to 500 mL of 0.150 M acetic acid. weak acid + weak base => very little reaction

EX 5. K_a (CH₃COOH) = 1.76 × 10⁻⁵)

a) Determine the pH of a solution which is simultaneously 0.500 M CH_3COOH and 0.300 M sodium acetate

$$pH = pK_a + \log_{10} \frac{[base]}{[acid]} = -\log_{10}(1.76 \times 10^{-5}) + \log_{10} \frac{[0.300]}{[0.500]} = 4.533$$

b) Determine the pH when 100 mL 0.200 M sodium acetate is added to 500 mL of 0.150 M acetic acid. weak acid + weak base => very little reaction

$$pH = pK_a + \log_{10} \frac{[base]}{[acid]} = -\log_{10}(1.76 \times 10^{-5}) + \log_{10} \frac{100(0.200)/600}{500(0.150)/600} = 4.879$$

calculate new molarities when mixing

EX 6. Determine the pH when 100 mL of 0.500 M NH₃ is mixed with 200 mL of 0.300 M ammonium chloride (NH₄Cl), K_b (NH₃) = 1.8 × 10⁻⁵

EX 6. Determine the pH when 100 mL of 0.500 M NH₃ is mixed with 200 mL of 0.300 M ammonium chloride (NH₄Cl), K_b (NH₃) = 1.8 × 10⁻⁵

pH = p
$$K_{a}$$
 + log₁₀ $\frac{[base]}{[acid]}$ = - log₁₀ $\frac{(1.01 \times 10^{-14})}{(1.8 \times 10^{-5})}$

weak acid + weak base => very little reaction

EX 6. Determine the pH when 100 mL of 0.500 M NH₃ is mixed with 200 mL of 0.300 M ammonium chloride (NH₄Cl), K_b (NH₃) = 1.8 × 10⁻⁵

$$pH = pK_a + \log_{10} \frac{[base]}{[acid]} = -\log_{10} \frac{(1.01 \times 10^{-14})}{(1.8 \times 10^{-5})} + \log_{10} \frac{(0.100)(0.500)}{(0.200)(0.300)} = 9.172$$

weak acid + weak base => very little reaction

EX 6. Determine the pH when 100 mL of 0.500 M NH₃ is mixed with 200 mL of 0.300 M ammonium chloride (NH₄Cl), K_b (NH₃) = 1.8 × 10⁻⁵

$$pH = pK_a + \log_{10} \frac{[base]}{[acid]} = -\log_{10} \frac{(1.01 \times 10^{-14})}{(1.8 \times 10^{-5})} + \log_{10} \frac{(0.100)(0.500)}{(0.200)(0.300)} = 9.172$$

weak acid + weak base => very little reaction

ratio of molarities = ratio of moles

$$pH = pK_a + \log_{10}\frac{[B]}{[A]}$$

pH =
$$pK_a + \log_{10} \frac{[B]}{[A]} => ratio, R = \frac{[B]}{[A]} = 10^{pH - pK_a}$$

pH =
$$pK_a + \log_{10} \frac{[B]}{[A]}$$
 => ratio, R = $\frac{[B]}{[A]}$ = 10^{pH-pK_a} = $10^{4.50-4.2006}$ = **1.992** [A] => [B] = 1.992 [A]

pH =
$$pK_a + \log_{10} \frac{[B]}{[A]}$$
 => ratio, R = $\begin{bmatrix} B \\ A \end{bmatrix}$ = 10^{pH-pK_a} = $10^{4.50-4.2006}$ = **1.992**
=> $[B]$ = 1.992 [A]
[B] + $[A]$ = 0.40 = 1.992 [A] + $[A]$ => $[A]$ = 0.1336 M

$$pH = pK_{a} + \log_{10} \frac{[B]}{[A]} \implies ratio, R = \begin{bmatrix} B \\ [A] \end{bmatrix} = 10^{pH-pK_{a}} = 10^{4.50-4.2006} = 1.992 = 1.992 = [B] = 1.992 = 1.992 = [B] = 1.992 = 1.992 = [A] = 0.1336 = V (1.00) / 500 \implies 66.8 mL$$

EX 7. Prepare 500 mL of a solution buffered at pH = 4.50 with a **buffer con**centration of 0.40 M. This buffer is to be made from 1.00 M C₆H₅COOH (K_a = 6.3 × 10⁻⁵, p K_a = 4.2006) and 1.00 M NaC₆H₅COO. What volume of acid and its conjugate base would you need?

$$pH = pK_{a} + \log_{10} \frac{[B]}{[A]} \implies ratio, R = \frac{[B]}{[A]} = 10^{pH-pK_{a}} = 10^{4.50-4.2006} = 1.992$$
$$=> [B] = 1.992 [A]$$
$$[B] + [A] = 0.40 = 1.992 [A] + [A] \implies [A] = 0.1336 M$$
$$= V (1.00) / 500 \implies 66.8 mL$$
$$[B] = 1.992 [A] = 1.992 (0.1336) = 0.2661 M \qquad check ratio:$$
$$= V_{B} (1.00) / 500 \implies 133 mL \qquad R = 0.133 (1.00) /$$

0.0668(1.00) = 1.991

EX 8. Prepare a solution buffered at pH = 11.10. This buffer is to be made from 225 mL of 0.331 M CH₃NH₂ ($K_a = 2.3 \times 10^{-11}$, p $K_a = 10.6382$) to which 0.293 M HI is added. What volume of HI would you need?

EX 8. Prepare a solution buffered at pH = 11.10. This buffer is to be made from 225 mL of 0.331 M CH_3NH_2 ($K_a = 2.3 \times 10^{-11}$, p $K_a = 10.6382$) to which 0.293 M HI is added. What volume of HI would you need?

$$pH = pK_a + log_{10} \frac{[B]}{[A]} =>$$

EX 8. Prepare a solution buffered at pH = 11.10. This buffer is to be made from 225 mL of 0.331 M CH_3NH_2 ($K_a = 2.3 \times 10^{-11}$, p $K_a = 10.6382$) to which 0.293 M HI is added. What volume of HI would you need?

$$pH = pK_a + \log_{10}\frac{[B]}{[A]} => ratio, R = \frac{[B]}{[A]}$$

EX 8. Prepare a solution buffered at pH = 11.10. This buffer is to be made from 225 mL of 0.331 M CH₃NH₂ ($K_a = 2.3 \times 10^{-11}$, p $K_a = 10.6382$) to which 0.293 M HI is added. What volume of HI would you need?

$$pH = pK_a + \log_{10}\frac{[B]}{[A]} \Rightarrow ratio, R = \frac{[B]}{[A]}$$
$$CH_3NH_2 + HI \rightarrow CH_3NH_3^+ + I^-$$

EX 8. Prepare a solution buffered at pH = 11.10. This buffer is to be made from 225 mL of 0.331 M CH₃NH₂ ($K_a = 2.3 \times 10^{-11}$, p $K_a = 10.6382$) to which 0.293 M HI is added. What volume of HI would you need?

$$pH = pK_{a} + \log_{10} \frac{[B]}{[A]} = ratio, R = \frac{[B]}{[A]} = \frac{n_{B}}{n_{A}} = 10^{pH - pK_{B}} = 10^{11.10 - 10.6382} = 2.896$$
$$= n_{B} = 2.896 n_{A}$$
$$CH_{3}NH_{2} + HI \rightarrow CH_{3}NH_{3}^{+} + I^{-}$$

EX 8. Prepare a solution buffered at pH = 11.10. This buffer is to be made from 225 mL of 0.331 M CH₃NH₂ ($K_a = 2.3 \times 10^{-11}$, p $K_a = 10.6382$) to which 0.293 M HI is added. What volume of HI would you need?

$$pH = pK_{a} + \log_{10} \frac{[B]}{[A]} => ratio, R = \frac{[B]}{[A]} = \frac{n_{B}}{n_{A}} = 10^{pH - pK_{a}} = 10^{11.10 - 10.6382} = 2.896$$
$$=> n_{B} = 2.896 n_{A}$$
$$CH_{3}NH_{2} + HI \rightarrow CH_{3}NH_{3}^{+} + I^{-}$$

 $n_{\rm B} + n_{\rm A} = 0.225(0.331)$

EX 8. Prepare a solution buffered at pH = 11.10. This buffer is to be made from 225 mL of 0.331 M CH₃NH₂ ($K_a = 2.3 \times 10^{-11}$, p $K_a = 10.6382$) to which 0.293 M HI is added. What volume of HI would you need?

$$pH = pK_{a} + \log_{10} \frac{[B]}{[A]} = ratio, R = \frac{[B]}{[A]} = \frac{n_{B}}{n_{A}} = 10^{pH - pK_{a}} = 10^{11.10 - 10.6382} = 2.896$$
$$= n_{B} = 2.896 n_{A}$$
$$CH_{3}NH_{2} + HI \rightarrow CH_{3}NH_{3}^{+} + I^{-}$$

 $n_{\rm B} + n_{\rm A} = 0.225(0.331) = 0.074475 = 2.896 n_{\rm A} + n_{\rm A} \implies n_{\rm A} = 0.01911 \text{ mol}$

EX 8. Prepare a solution buffered at pH = 11.10. This buffer is to be made from 225 mL of 0.331 M CH₃NH₂ ($K_a = 2.3 \times 10^{-11}$, p $K_a = 10.6382$) to which 0.293 M HI is added. What volume of HI would you need?

$$pH = pK_{a} + \log_{10}\frac{[B]}{[A]} = ratio, R = \frac{[B]}{[A]} = \frac{n_{B}}{n_{A}} = 10^{pH - pK_{B}} = 10^{11.10 - 10.6382} = 2.896$$
$$= n_{B} = 2.896 n_{A}$$
$$CH_{3}NH_{2} + HI \rightarrow CH_{3}NH_{3}^{+} + I^{-}$$

 $n_{\rm B} + n_{\rm A} = 0.225(0.331) = 0.074475 = 2.896 n_{\rm A} + n_{\rm A} => n_{\rm A} = 0.01911 \text{ mol}$

0.01911 = V (0.293) => 65.2 mL